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Abstract

Standard methods for nonlinear equations and unconstrained minimization
base each iteration on a linear or quadratic model of the objective function,
respectively. Recently, methods using two generalizations of the standard
models have been proposed for these problems. Conic methods for uncon-
strained minimization use a model that is the ratio of a quadratic function
divided by the square of a linear function. Tensor methods for nonlinear equa-
'~ tions augment the standard linear model with a simple second order term. This
paper surveys the research to date on methods for unconstrained minimization
and nonlinear equations that use conic and tensor models. It begins with a brief
summary of the standard methods, so that the ‘paper is essentially self-

contained.






1. Introduction

The two major unconstrained nonlinear algebra problems are the nonlinear
equations problem

given F: R"-»R™, find z,€R™ such that F(z4)=0 (1.1)
where we assume FeC!, and the unconstrained minimization problem,

nﬁ;xeig}‘ize f iR"-R (1.2)
where we assume feC® Computational methods exist that solve many such
prbblems successfully and efliciently, but research aimed at improving these
methods continues. In this paper, we discuss two recently introduced classes of
algorithms for solving these problems, conic methods for unconstrained minimi-
zation and tensor models for nonlinear equations. Both classes contain interest-

ing innovations and seem to offer advantages over the standard methods,

although it is too early to access the ultimate importance of either one.

We assume the reader has at least some familiarity with computational
methods for nonlinear equations and unconstrained minimization, although we
briefly summarize the leading methods in Section 2. Some survey papers on
these methods include Brodlie [1977], Dennis [1977], Schnabel [1982a] and More'
and Sorensen [1982]. The books by Fletcher [1980], Gill, Murray, and Wright

[1981], and Dennis and Schnabel [1983] contain a more detailed treatment.

We will denote the matrix of first partial derivatives of F' at z, the Jacobian
matrix, by F'(z)eR™"; here F/(z)[i,j]=0f(z)/ 8z[j] where f;. R® R is the i*
component function of F(z). We will denote the vector of first partial derivatives
of f at z, the gradient vector, by Vf(z)<R", and the symmetric mafrix of
second partial derivatives of J at z, the Hessian matrix, by V3f (z)eR™*",
Vf(z)[il=0f 7 8z[i] and V3f (z)[i,j]=0%F / 0z [i]dz[j]. Note that we are denot-

ing the i** component of a vector z by z[i] so that we can reserve the notation



z; for the ith iterate in a sequence of vectors {z, €R™{.

The main difference between standard methods and conic and tensor
methods is in the local model of the nonlinear function that the method uses in
determining its iterates. Standard methods for nonlinear equations base the
step from the current iterate z; upon a linear model of F'(z) around z,

Mz +d) = F(z;) + J.d (1.3)
where d €R™ and J,€R™*™ is F'(z,) or some approximation to it. Similarly, stan-
dard methods for unconstrained minimization base each iteration upon a qua-
dratic model of f (z) around =z,

m(z.+d) = f(x,) + gld + %dTH,d (1.4)
where g, €R™ is Vf (z;) or a finite difference approximation to it, and H, €R™" is
V3f (z,) or some symmetric approximation to it. These two models are closely
related because the minimizer of f(z) must occur at a point zy where
Vf (zx)=0, and the gradient of the model (1.4),

Vm(z, +d) = Vf (z;) + H.d (1.5)
is a linear model of the system of nonlinear equations Vf (z) : R*+R"™.

The two new classes of methods are based upon generalizations of (1.3) and
(1.4). Conic methods for unconstrained minimization base each step on a model
of the form

gld %dTA d
1+bJd  (1+bJd)? (1.6)

where A, €R™™ is symmetric and b,€R™. Tensor methods base each iteration

Th(zc +d) = f‘(xc) +

on a model of the form

Mz, +d) = F(z,) + J.d + T, dd “ (1.7)
where T, €R™™*" has a particularly simple form. Here we use the notation T, dd

h

to denote the vector in R™ whose i* component is
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(Tead)li] = 3 B Lol k] dlj}alk] (1.8)
Of course the justification fof either of these models is not obvious and we
explain it in this paper. Conic models were introduced by Davidon [1980] and
also have been investigated by Bjorstad and Noéedal [1979], Sorensen [1980],
Stordah! [1980], Davidon [1982], Gourgeon and Nocedal [1982], and Schnabel
{1982b]. Tensor models were introduced by Schnabel and Frank [1982] and also
are discussed in Frank [1982]. The main goal of the developers of tensor
methods is to improve the performance of existing methods on problems were
F (z...) is singular or ill-conditioned, while at least maintaining the performance

of the existing methods on all other problems. The developers of conic methods

do not seem to have a similarly limited objective.

The remainder of the paper is organized as follows. Section 2 provides a
brief survey of the leading standard methods for nonlinear equations and uncon--
strained minimization, which are based on the models (1.3) and (1.4) respec-
tively. These include both the derivative methods used when F'(z) or V*f (z) are
available analytically or from finite differences, and the secant methods that are
used otherwise. We concentrate on the ideas and properties that are relevant to
our discussion of conic and tensor methods. A reader familiar with these
methods should skip or skim Section 2. In Section 3 we briefly discuss several
extensions of the standard methods that help motivate conic and tensor
methods. These are the methods of Barnes [1965] and Gay and Schnabel [1978]
for nonlinear equations and of Davidon [1975] for unconstrained minimization.
They all still use the standard models (1.3) and (1.4), but some of their objec-
tives and techniques are similar to conic and tensor methods. We discuss conic
methods in Section 4, and tensor methods in Section 5. We comment briefly on
the application of these two classes of methods to other nonlinear problems in

Section 6.



In our opinion, this paper covers most of the important methods for non-
linear equations and unconstrained minimization based on nonstandard models.
There has been occasional other work along these lines, however. Perhaps most
significant are the methods for homogeneous functions investigated by Jécobson
and Oxsman [1972], Charalambous [1973], Kowalik and Ramakrishnan [1978],
and others. These methods do not seem to have led to improved algorithms for

general classes of problems.

2. Standard models and methods

The fundamental method for solving the nonlinear equations problem is
Newton's method. It consists of choosing the new iterate, x,, as the root of the\
linear model of F'(z) around z.,

Mz, +d) = Fz;) + F{z;)d, (2.1)

the first two terms of the Taylor series. If F'(x.) is nonsingular, (2.1) has a
unique root at

T, =z, —- F'(.;:,,)"F(zc). (2.2)

If F(z4)=0, F'(zy) is nonsingular, and F'(z) is Lipschitz continuous in an open

neighborhood containing z,, then the sequence produced by iterating (2.2) is

well-defined and converges q-quadratically to z4, provided the starting point

zoER™ is sufficiently close to zx. A method that converges provided it is started

sufficiently close to the solution is called locally convergent. (For our

definitions of rates of convergence, see for example Ortega and Rheinboldt

[1970] or Dennis and Schnabel [1983].)

There are four weaknesses of Newton's method as a computational pro-

cedure for solving systems of nonlinear equations that we wish to discuss. They



are

(1) The sequence of iterates may not converge to any root if zy is not
sufliciently close to a root.

(2) The iteration (2.2) is not well-defined computationally if F'(z.) is singular or
ill-conditioned.

(3) Newton's method usually is slowly locally convergent or does not converge
at all to a root where F'(zy) is singular.

(4) F'(z) may not be available in practical applications.

The first difficulty is addressed by modifying (2.2) when necessary so that
the method converges to a root from starting points outside the region of local
convergence. This property is called global convergence. The most common
modifications to achieve global convergence are the line search, where each z,
is chosen by

Te =Zg — A F.(zc)_lp(zc) (2.3)
for some A; >0, and the trust region approach, where z, is chosen by

20 = 2y = (F(z)TF (@) +ao 1) 1P (z,) F(z,) (2.4)

with a¢=0. In both cases, the real valued parameter A, or o, is selected so that
z, is a satisfactory next iterate, for example so that ||F(z,)|z < ||F(z:)lls. In the
line search, Newton's method corresponds to A;=1, and it is guaranteed that
|F(z)llz < ||F(x+)|l for sufliciently small positive A;. In the trust region formula
(2.4), Newton's method is &;=0, and [|[F(z,)|]z < |[|[F(z:)|lz is guaranteed for
sufficiently large positive ;. Since the new algorithms use the same types of
modifications to achieve global convergence, we do not discuss these strategies
further. Many of the references listed in the second paragraph of Section 1 con-

tain information on these strategies.

Various modification may be made to these methods when F'(x,) is singular
or ill-conditioned. These include: i) replacing F(z;)™! in the line search formula
(2.3) by the pseudo-inverse F'(z.)*, where the pseudo-inverse of A€RE™*" may be

defined by



At = '}1*%1 (ATA+yI)" 14T, (2.5)
ii) replacing F'(z.)"! in the line search by (F/(z.)" F'(z;) + yI)'F'(z;)T with an
appropriate small positive value of v; iii) using the trust region iteration (2.4)
with o, strictly positive. For further information, see Section 6.5 of Dennis and
Schnabel [1983]. We mention this difficulty mainly because tensor models for

nonlinear equations deal with it nicely.

If F'(zy) is singular, the convergence of the existing methods to z4 usually
is linear at best, even with the above modifications. (See Decker and Kelley
[19B0a, 1980b, 1982], Griewank [1980], Griewank and Osborne [1981], Reddien
[1978, 1980], Rall [1966] for a discussion of the convergence of Newton's method
on singular problems.) Some modifications have been proposed to speed conver-
gence on singular problems (see many of the same references), but they mainly
require apriori knowledge that #(x;) is singular and do not seem suitable for_

general classes of problems.

If the Jacobian matrix F'(z) is not available in analytic form, it may be
approximated by finite differences, meaning that the 7™ column of F(z;) is

approximated by

(Vo ooty = 2 thes) = Flze) (26)

for some small he€R. (Here e; denotes the J* unit vector.) If the expense of

this approximation, n additional evaluations of F{(z) per iteration, is acceptable,
this is done and the aforementioned methods are used with (2.6) in place of
F'(x:). If the stepsizes h are chosen correctly, these is little or no deterioration

in performance when changing from analytic to finite difference Jacobians.

If the additional cost of finite difference Jacobian approximation is unac-
ceptable, then a class of methods referred to as secant (or quasi-Newton)
methods is used instead. These methods replace F'(z;) in formulas (2.2), (2.5),

or (2.8) by a less precise approximation J; calculated as follows. At the first



7

iteration, Jg is the finite difference approximation to F'(zg). After the step from
z, to z, is determined, the approximation J; to F'(z;) is updated into an
approximation J, to F'(z,). The most commonly used updating rule is

(yc '_Jc S¢ )ScT

Jy=Jg +
+ [ ScTsc

(R.7)
where

Se Txy =T, Yo = Flzy) - Flz,). (.8)
This update was introduced by Broyden [1965]. It obeys the secant equation

Ji8: = Yo (.9)
the multi-dimensional generalization of the standard one dimensional secant
equation. For any J, that obeys (2.9), the new linear model of F'(z) around z,,

M(z,+d) = Flz,) + Jd (2.10)
obeys

H(z,) = F(z.), M(z)=F(z). (2.11)
Update (2.7) is selected because of all the matrices obeying (2.9), J, given by
(2.7) is the closest to J; in the Frobenius norm. {(The Frobenius norm of a
matrix or tensor is the square root of the sum of the squares of all the matrix's

or tensor's components.)

The local method obtained by using (2.7) to calculate the Jacobian approxi-
mations with Jg a finite difference approximation to F'(zg), and using
2y =1z, = JVF(2,) (2.1R)
to calculate the steps is referred to as Broyden's melhod. It is locally g-
superlinearly convergent to a root z, under the same assumptions on F(z) and
z, stated above for the g-quadratic convergence of Newton's method. Notice
that a secant method for nonlinear equations requires the values of F'(z) at the
iterates, and no other function or derivative values. In general, secant methods
for nonlinear equations or unconstrained minimization usually require more

iterations to solve a particular problem than the corresponding analytic or finite



difference derivative method, but they usually require fewer function evalua-
tions than the finite difference method. Thus they usually are preferred for
problems where function evaluation is expensive and analytic derivatives are

unavailable,

The above discussion of secant methods, while cursory, contains the back-
ground required for our forthcoming consideration of conic and tensor models.
In particular, we emphasize the interpolation property (2;11) that results from
formulas (2.9) and (2.10). For further information on these methods, see Dennis

and More' [1977], or the references in paragraph 2 of Section 1.

Now let us turn to unconstrained minimization. Newton's method for
unconstrained minimization is based on the quadratic model of f (z) around =z,
m(z; +d) = f(z:) + Vf ()7d + $dTVf (z;)d, (2.18)
the first three terms of the Taylor series. If VS (z,) is positive definite,
m{z,+d) has a unique minimizer at
z4 = 2o = VB (2:)7V] (). (R.14)
Alternatively, the iteration (2.14) can be derived by considering the linear model

of Vf (z) around z,

Mz, +d) = Vf (z,) + V3F (z,)d (R.15)
and selecting z, as the root of M(z, +d). Viewed in this way, (2.14) is just the
application of Newton's method for nonlinear equations to the problem Vf (z)=0.
Therefore it is locally g-quadratically convergent to any point zx where
Vf (z4)=0, V2f (z,) is nonsingular, and V3f (z) is Lipschitz continuous in an open
neighborhood containing zx. Such a point may be a minimizer, maximizer, or

~saddle point of f (z).

The four weaknesses of Newton's method for nonlinear equations that we
discussed carry over to Newton's method for unconstrained minimization, and

the solutions are similar. Global convergence usually is achieved by modifying



(2.14) to

zy =2, — N HOWS () (2.16)
or

2, =2, — (VPf (2 )+ I)7WVF (20). (R.17)
In the first case, H, = V3f (z.) if V2f (x,) is safely positive definite, otherwise H,
is some positive definite modification of V3f (z.), for example H, = V3f (z;)+7yI
with ¥ large enough to make H, positive definite. Then it is guaranteed that
S (z,) < f (z;) for sufficiently small positive Ac. In the second case, o, is nonne-
gative if V2f () is positive definite, and larger than the magnitude of the most
negative eigenvalue of V2f (z.) otherwise. It is guaranteed that f(z.) < f(z;)
for sufficiently large positive o,. The conic methods we discuss use the same
strategies; no further understanding of these strategies is required for the pur-

poses of this paper.

-

Modifications (2.16) or (2.17) sucessfully udeal with the problem of defining a
satisfactory step when V2 f (z.) is singular or ill-conditioned. However, standard
methods still usually converge linearly at best to a point where Vf (z4)=0 and
VRf (z4) is singular.

Finally, Nevgton’s method for unconstrained minimization requires both the
gradient vector Vf(z) and the Hessian matrix V3f (z). If the gradient is not
available analytically, it must be approximated by finite differences since accu-
rate gradient values are essential. If the Hessian matrix is not available, V*¥f {z)
is replaced by a finite difference approximation if evaluation of f (z) is inexpen-
sive, by a secant approximation otherwise. Secant approximations for uncon-
strained minimization are derived similarly to Broyden's update for nonlinear
equations. After a step from z, to z,, the ;pproximation H, to V*f (z;) is

updated into an approximation H, to V3f (z.) obeying

Hyse =Y (R.18)
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where

S¢ =Ty =Ty Ye =V (z4) = Vf(2). (2.19)
Thus the quadratic model

Tz etd) = f(z,) + VF (z.)7d + $dTH. d (2.20)
satisfies the interpolation conditions '

F(z,) = f(z2), V(z,) =Vf(z)), Vm(z) =/ (z). (2.21)
In addition, H, is chosen to be symmetric since V3f (z) always is symmetric. '
Still, many symmetric H, satisifying (2.18) exist; the most used choice is the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) update

Se ScT H;s, ScTHc
o
Ye Se ScTI’Ic Sg

H,=H; + (222)

If H; is positive definite and
shy, >0, (2.23)

H, is positive definite as well. In practice the initial approximant Hy is chosen”
to be positive definite and the step selection strategy enforces (2.23), so all the
BFGS approximants to | the Hessian are positive definite. This simplifies the
modifications required to achieve global converéence. The local method result-
ing from using (2.22) to define the Hessian approximations and

z, =z, = H7WS () (2.24)
to define the steps is locally superlinearly convergent to a point z, where f (z)
and z 5 obey the conditions for the g-quadratic convergence of Newton's method,

if in addition V2f (z4) is positive definite and Hj is sufficiently close to V¥f ().

In summary, we divide the methods considered in this paper into the four
categories given in Table 2.1 below. Table 2.1 also lists the information interpo-
lated by the local models at z, used by the standard methods for each category.

We denote the iterate before z; by Zprev.

In Section 4 we also refer to another type of method for unconstrained

minimization, conjugate direction methods. These methods are related to
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Table 2.1 -- Categories of methods considered in this paper

(1) First derivative methods for nonlinear equations
local model at z; interpolates F(z;), F'(x;)

{R) Secant methods for nonlinear equations
local model at z, interpolates F(z), F(Zprev)

(3) Second derivative methods for unconstrained minimization
local model at z, interpolates f (z.), Vf (z:), V3f ()

(4) Secant methods for unconstrained minimization
local model at z; interpolates f (z;), Vf (zc), VS (Zprev)

secant methods for unconstrained minimization in that they use function and
gradient information only. They differ in that do not use any approximation to
the Hessian, and require only O(n) storage. Tﬁus they are mainly intended for
problems where n is large and the use of O(n?) storage locations is undesirable.”
Many of them have the property that if f {z) is a positive definite quadratic, then
the nth jterate of the method will be the minimizer z,. Space does not permit
us to describe conjugate direction methods further here; they are described
thoroughly in Fletcher [1980], Hestenes [1980], and Gill, Murray, and Wright
[1981].

The conic and tensor methods to be described are based on generalizations
of the models discussed in this section. As motivation, Table 2.2 summarizes the

properties of a good model.
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Table 2.2 - Properties of a good model for nonlinear equations or
unconstrained minimization

(1) The model should interpolate useful information.

(2) The model should be a useful approximation to the problem.
(3) The model should be easy to form.

(4) The model should be easy to solve.

Conic and tensor models aim to improve properties 1 and 2 without seri-
ously harming properties 3 and 4. The hope is that the additional costs incurred
in items 3 and 4 will be offset by gains in the efficiency or success rate of the
algorithm. As a point of reference, Table 2.3 summmarizes the costs that may be
used to measure the efficiency of algorithms for nonlinear equations or uncon-
strained minimization, and where applicable, the costs incurred by the standard

~

methods.

Table 2.3 -- Costs of solving nonlinear equations or unconstrained minimization
problems by standard methods

(1) Algorithmic overhead (dominated by cost of solving the linear system
to find the Newton or secant step; O(n3) for derivative methods, 0(n?)
for secant methods)

(2) Storage (betweenn®/ 2 and 2n? locations)
(3) Evaluations of F(z) or f(z), and possibly derivatives

In many practical applications, the evaluations of F(z) or f(z) are very
expensive and are the dominant cost. Therefore when assessing the efficiency of
new methods, it is desirable that they solve problems using fewer evaluations of
the nonlinear function. It also is important, however, that they do not appreci-
ably increase the algorithfnic overhead or storage requirements of the standard

algorithms.
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3. Interpolating additional information using standard models

Conic and tensor models interpolate more function and derivative informa-
tion than the standard models listed in Table 2.1, by using a more general
model. In one of our four problem classes, secant methods for nonlinear equa-
tions, it is in fact possible to interpolate additional information using the stan-
dard model. For unconstrained minimization, this is only possible in general for
quédratic objective functions. We briefly discuss these ideas to motivate further

conic and tensor methods.

Secant methods for nonlinear equations use the model

Mz +d) = F(z,) + J,d (3.1)
to model F(z) around z,. The secant equation ‘

J4Se =Y, ) (32)‘
guarantees M(z,) = F(z;). Suppose we also want the model to interpolate the
function values F(z ;) at some previous iterates z_;, i=1, - - - ,p. This requires

F(z) = F(zy) + Jo(z—4) (3.3)
or

Jusi =1y (3.4)
where

S =z -z, o= F(zy) - Flzy). (3.5)

Since J, is an nxn matrix, we may satisfy (3.2), plus (3.4) for up to n-1
values of 7, as long as 5;, §;. - * *, 5, are linearly independent. This possiblity,
and a generalization of Broyden's method that achieves it, was first proposed by
Barnes [1965]. However the method was not very successful in practice; prob-
lems arose when the directions to the past points s;, s,, - -, 5,_; were linearly
dependent or close to being dependent. Gay and Schnabel [1978] revived and
modified Barnes’ idea. By limiting the set of additional past function values to

be interpolated to p<n points for which s;, s;, -+, sp are strongly linearly
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independent, they were able to construct a locally g-superlinearly convergent
algorithm that appears quite competitive with a standard Broyden's method
algorithm in practice, We do not discuss their method further here. We
emphasize, however, the two ideas that will recurr in the forthcoming methods:
i) using the model to interpolate function values at previous iterates, and ii) lim-

iting these previous iterates, possibly in a fairly restrictive manner.

The obvious extension of the idea of Barnes and Gay and Schnabel to uncon-
strained minimization does not work in general. The extension would be to ask
the secant model of f (z) around z,,

Vm(z.+d) =Vf (z,) + Hyd (3.8)
to interpolate Vf(z_;) at some previous iterates z_; as well as interpolating
Vf (z;) at z;. The difficulty comes from the required symmetry of H,. Suppose
for the model (3.6), Vm.(z.)=Yf (z,) and Ym(z_,)=Yf (z_,). This would require

~.

H,s; =y, and H,s; =1, (3.7)
where s, and s, are defined as above and

Vo =VF(2,) =W/ (z), w1 =Vf(zs) - VF (z-0). (3.8)

Since H, is symmetric, (3.7) would imply
s{yc = scTyl ’ (3.9)

since both sides of (3.9) equal s{H,s,. While (3.9) is satisfied if f(z) is a qua-

dratic, it is not satisfied in general for nonquadratic functions.

Davidon [1“975] proposed a secant method for unconstrained minimization
that interpolates up to n past gradients when f (x) is quadratic, and suggested
an extension to general objective functions. Schnabel [1977] studied Davidon's
method and proposed several other extensions. None of these have proven supe-
rior to the standard secant methods for unconstrained minimization in practice.
The desire to interpolate additional previous function or gradient information

partially motivates some of the conic methods for unconstrained minimization
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that we discuss next.

4. Conic methods for unconstrained minimization

The use of conic models in unconstrained minimization algorithms was first
proposed by Davidon [1980] and much of the following background material is
contained in his paper. A conic function has two equivalent algebraic forms.
One is the ratio of a quadratic function divided by the square of a linear func-
tion, |
f +h7d + Y%dTBd

(1+67d)? (2.1)
where f €R, a,d heR™, BER™™. Equation (4. 1) is equivalent to

c(d) =

T T
- gTd Y¥al Ad
c(d)=F *+ 155Ta ¥ (i4b7d)? (4-2)
where
g=h-Jb, A=B -gbT —bgT —2rbbT. (4.3)

The form (4.2) is used for the remainder of this section. The function c{d) is
called a conic because its level sets are conic sé;tions, i.e., circles, ellipses, par-
abolas, or hyperbolas. Figure 1 is an example of a conic function in one variable.
Note the discontinuity in c¢(d); in general, function (4.2) is discontinuous along
the n—1 dimensional hyperplane {d|1+b7d=0}, called the horizon of c(d). The

vector b is called the gauge vector.

The conic function (4.2) is related to the quadratic

c{s)=F +gTs +¥sT4s (4.4)
by
§= 1+(;Td' (45)

Equation (4.5) is known as a collinear scaling of d; if d and s are related by (4.5)
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c(d)

, ) e . - d $d?
Figure 1 -- The conic function of one variable c(d) =1 + va T (1+d)?

then

4= Ty (4.6)
Collinear scalings map straight lines to straight lines, affine subspaces to affine
subspaces, and most generally, convex sets to convex sets. Furthermore, they
are the most general transformation with these properties. (A collinear scaling
may have a slightly more general form than (4.5); see Davidon [1980].) Of
course, the mapping (4.5) has the discontinuity mentioned above. The relation-
ship between conics and quadratics may be used to derive some of the conic
algorithms described in this section, particularly the conjugate direction algo-

rithms of Davidon [1982] and Gourgeon and Nocedal [1982].
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To justify the use of the conic function (4.2) in unconstrained minimization
algorithms, first we must ask whether a model of this form is appropriate for use
in minimization algorithms, and then, to what use the extra degrees of freedom
in the model may be put. The answer to the first question is obtained using the
same technique that may be used to find the minimzer of a quadratic. Since for

nonsingular A4, (4.2) can be written

T
-1 d + -1 + — T p—1
c(d) has a unique minimer only if 4 is positive definite. In this case, the minim-

izer is any d satisfying

+Alg =
Tip7g T4 =0 (4.8)
if (4.8) has a solution. From (4.8), the solution to (4.8) is

—A-1

T 146747y
as long as 1+4b TA"‘g#O. So roughly speaking, a conic model has a unique

(4.9)

minimizer in almost the same cases as a quadratic does, that is, when the

matrix in the model is positive definite.

To use a conic function of form (4.2) as a model in a minimization algo-
rithm, presumably it should interpolate some function and derivative values of

f (). The first two derivatives of ¢ (d) are

- bd
Ve(d) = mf[ m{[g Tm}—] (4.10)

A-bgT—gbT  249bT+2b974 bb RdT Ad
2 d) = g g g g 2
Ve = S eTay (1+67d)® (1+de)3[g awre sy CHEY
Thus
Ve(0)=g. V%c(0)=A-~bg" —gb” (4.12)

Therefore to model f (z) around z, with a conic model, one should use a model

of the form
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Vi (w)Td = dTAd
1+bid (1+bJd)?

m(zs +d) = f(z) + (4.13)

since it satisfies

m(ze)=f (z;), Vmlz)=Vf (z.). (4.14)
for any b,€R™ and 4, €R™*", From (4.12), the second derivative matrix of this

model is

Vzﬁ?’(xc )=A; ~b Vf (z, )T—Vf (xc)bcT- (4.15)
Most of the research on conic methods is based on a model of form (4.13).
If 4 is positive definite and 1+bJA7 WS (2,) # 0, it has a unique minimizer at
AU (=)

Zg — )
T ATV (=)
the minimizer is on the same side of the horizon as z; if and only if

(4.16)

1+bTA7f (2,) >0. In the remainder of this section, we describe how several
authors have used conic models in unconstrained minimization algorithms. This
includes the choice of the parameters A, and b, in {4.13). It is important to
note that the matrix A, wil be different than the matrix used in standard
methods for unconstrained minimization. Thus the direction as well as the mag-

nitude of the step to the minimizer of the conic model will be different.

Davidon [1980] and Sorensen [1980] consider the use of a conic model in a
secant method for unconstrained minimization. As in our discussion of secant
methods in Section 2, assume we have taken a step from z; to x4, and are con-

structing a new conic model of f (z) around z,,

Vf(zy) Td %dTA&»d

m +d) = + X '
m(z,+d) = f(z4) T+67d * (1ebla) (4.17)
Davidon and Sorensen show how to use this model to obtain .
m(z,) = f{ze), Um(z,) = Vf (z). (4.18)

as well as m(z,) = f(z,) and Ym(z,) = Vf (z.) which are satisfied for all values

of by and A,. Let s, =z, —z.. The first interpolation condition in (4.18)
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requires

Vf(z,) Tsc %SCTAFSC
1-bTs, (1-b7s.)?

F(z) =7 (=) -

while the second is satisfied if

1 b,st |l As, l
= I+ Vf (z4) — . .
Vf () 1-bTs, 1-bTs, I f(z4) 1-bTs, (4.20)

Let 8 = 1-bTs,. Taking the inner product of (4.20) with s, and then using (4.19)

(4.19)

to eliminate the sTA,s; term yields

B 8%V (z:) = 2B(f (z4)~f (z.)) + sIVf (z4)] = 0. (4.21)
If (4.21) has a nonzero real solution (this can be assured by the choice of A; ina
line search algorithm), then any b, that satisifies

bls, =1 -8 (4.2%)
together with any A, that satisfies

Ayse = BVf (z,) — B (x,)+ 6% ,s{Vf () (4.23)"
causes the model (4.17) to satisfy (4.18).
Thus by using (4.21), (4.22), and (4.23), the conic model (4.17) satisfies the

three interpolation conditions (2.21) satisfied by standard secant methcds for

unconstrained minimization, plus m(z;) = f(z.). This causes the step to the
minimizer of the conic model to depend on function as well as gradient values,
whereas in a standard secant method, the minimizer of the model is determined
solely by gradient values. This fact is cited by several authors as avreason why
algorithms based on conic models should be more efficient than the correspond-

ing algorithms based on quadratic models.

Sorensen [1980] proves the local g-superlinear convergence of an algorithm
of the type we have just described. His algorithm assures that all the matrices
A, are positive definite through the choice of the line search parameter, the
proper choice from among the two nonzero roots of (4.21), and by using BFGS

updates. The parameter b, is chosen in the direction Vf(z;). Sorensen also
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presents some promising test results, but they are from a very limited set of
tests, and considerably more testing would be required to establish the utility of

this approach.

Davidon [1980] also shows how 4, and &, may be chosen so that the model

satisfies the additional interpolation conditions

m{z )= f(z) and Vm(z)=Vf(z4), i=1,- - n—1 (4.24)
when f (z) is a conic function, where as in Section 3 {z_;} are past iterates. For

nonconic functions this is not usually possible, however, and to our knowledge,
this idea has not yet been used to make a general purpose unconstrained
minimization algorithm.

Schnabel [1982b] and Stordahl [1980] study the use of the model (4.13)

when the Hessian matrix is available analytically or by finite differences. The

model they use is
mz, +d) =
vf (z.)7d %dr(vzf (2:)+b: VS (xc)T+Vf (xc)bcy)d .
F=) =i (1+67d)% : (429)

From (4.14) and (4.15), (4.25) satisfies

ﬁ(xc) = f(z), Vm(z,)=Vf (ze), VPm(z.) = VBf () (4.26)
for any b; €R™. The vector b, then may be chosen to allow the model to interpo-

late additional information. Schnabel and Stordahl impose the requirement

m(zy) = flzq)i=l, (4.27)
at p<n past iterates z_;. Substitution into (4.25) shows that this model satisfies

m(z-) = f(z) it
bls; =0y = (4.28)

VS (26)si = VU ()78 + (f (20) S @ ) BsIVS ()5 4V (z,)7s;)
f (2.‘_,‘) —f(xc)

1+

where
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=X — Xy, (4.29)
The term inside the square root in (4.28) may be negative but rarely is in prac-
tice. Since (4.28) only determines the projection of b, in the direction s;, the
conic model (4.25) may interpolate up to n past function values f (x_;) as long

as the directions to the past points, s;, are linearly independent. If f (z) is qua-

dratic, the right hand side of (4.28) is zero so the choice b, =0 is allowed.

Schnabel and Stordahl tested an algorithm based on the above model. They
found it advantageous to limit the number of past function values interpolated
at any iteration to p<vVn, and to require the directions s; to the past points to
be strongly l:mearly independent of each other; roughly speaking, each direction
 s; that is used must make an angle of at least 45 degrees with the linear sub-
space spanned by the other directions §s;} that are used. They chose b; to be

the minimum l; norm solution to the underdetermined system of equations

bls; =0y, i=1, - p. (4.30)

Schnabel and Stordahl compared their algorithm to an algorithm that used

the standard second derivative quadratic model but was identical in all other
respects, on the unconstrained minimization test problems in More', Garbow,
and Hillstrom [1981]. Each algorithm used the strategy in Dennis and Schnabel
[1983] to augment Vf (z;) or 4 to be positive definite when necessary, and then
chose the next iterate using a line search. Out of 32 test runs, the conic algo-
rithm was more efficient (in iterations and function evaluations) on 19, less
efficient on 11, and tied on 4; on the average, the conic algorithm required 18%
fewer iterations and R1% fewer function evaluations than the quadrtic algorithm.
It is not clear whether these results justify the added complexity of the conic

method.

~ Another possibility in using model (4.25) is to choose b, so that Vm(z_,)

= Vf (z-;) where z_, is the most recent past iterate. This is more in keeping
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with the philosophy of the algorithms of Davidon and Gourgeon and Nocedal dis-

cussed next, as it implies that m(z) = f(z) if f(z) is a conic function. We

currently are investigating this approach.

Davidon [1982] and Gourgeon and Nocedal [1982] have proposed a conjugate
direction method based on conic models. It is a generalization of the standard
conjugate gradient method for minimizing quadratics (Hestenes and Stiefel
[1952]) and finds the minimizer of a conic function in at most n iterations. An
extension of these methods to nonconic functions has not yet been developed,
however, so no comparison with existing conjugate direction methods for uncon-

strained minimization is possible.

Since we do not include a thorough treatment of conjugate direction
methods in this paper, we just give a brief description of Davidon's and Gourgeon
and Nocedal's algorithms. The key feature is that they show that if f(z) is a~
'~ conic function, then given the values of f (z) and Vf (z) at any three collinear
points, the value of the gauge vector b can be determined. The value of the
gauge vector changes as the conic is expanded around different points, but only
by scalar multiples that Davidon and Gourgeon and Nocedal also show how to cal-
culate. Using this information, they are able to generalize the conjugate gra-
dient algorithm to exactly minimize the conic function along a line di at the kt*
iteration, while also choosing d, so that the next iterate Zp 4y is the minimizer of
the conic in the affine subspace spanned by the k —1 previous step directions d;,

** . dg_y as well. Thus the algorithm minimizes a conic function in n or fewer
iterations, without storing or using an nxn matrix. Gourgeon and Nocedal point
out several possible numerical instabilities in implementing this algorithm, and

seem to remedy them satisfactorily.

Davidon [1982] also proposes a related algorithm that again minimizes a

conic function in n or fewer iterations, and also accumulates an approximation
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to the matrix 4 in (4.2) as it proceeds. If f(z) is conic, after n iterations this
approximation is A = V*f (zx). Gourgeon and Nocedal state that the sequence
of points generated by their algorithm and Davidon's two algorithms is identical
for conic functions, if exact arithmetic is used. Davidon's secant algorithm
probably could be extended into a new secant conic algorithm for unconstrained
minimization. This extension would require the evaluation of f (z) and Vf (z) at
three collinear points on some or all iterations, as would an extension of the con-

jugate direction algorithms of Davidon or Gourgeon and Nocedal to nonconics.

Finally, Bjorstad and Nocedal [1979] show that the secant conic algorithm
originally proposed by Davidon converges quadratically under reasonable
assumptions when applied to one dimensional problems. This rate is faster than
the order (1+V5/ 2) 21.61 convergence rate of the secant method on one dimen-
sional problems. Similarly, the second derivative conic method of Schnabel and
Stordahl converges with order 1+V2 22.41 on one dimensional problems, com-
pared to the quadratic convergence of Newton's method. These results probably
have practical importance only if they extend to multiple dimensions, which is

very unlikely.

5. Tensor methods for nonlinear equations

Tensor models for nonlinear equations augment the standard linear model
of F(x) around z, by a second order term. The most obvious tensor model is
the first three terms of the Taylor series,

Mz, +d) = F(z,) + F(ze)d + ¥%F ' (z,;)dd, (5.1)
where F'e Rm* " However the use of model (5.1) in a nonlinear equations algo-
rithm would violate many of the principles expressed at the end of Section 2. In

particular, the model would require at least O(n®) additional operations to form
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and roughly n3/ 2 additional locations to store, and finding a root of the model
would require solving a system of n quadratic equations at n unknowns at each

iteration. Any of these costs clearly is unacceptable.

Instead, Schnabel and Frank [1982] have proposed the use of a model of the

form

Mz +d) = F(z,) + F(z,)d + BT, dd (5.2)
where T, €R™™" has a particulary simple form. In particular, the additional

costs of forming, storing, and finding a root of the tensor model all are small in
comparison to the corresponding costs already required by Newton's method.
In this section, we summarize how Schnabel and Frank determine the term 7; in
(5.2), how the resultant model is solved efficiently, and how a nonlinear equa-
tions method utilizes this method. Finally, we summarize some of their test

results,

The main motivation for the work of Schnabel and Frank was to construct a
general purpose method that would be more éﬁicient than standard methods on
problems where F'(z,) is singular or ill-conditioned, and at least as efficient as
standard methods on all other problems. An early version of their work is
reported in Frank [1982]. For practical purposes, it probably would be more
desirable to have a secant tensor method that does not require values of F'(z);

we currently are working on such an extension.

To determine the tensor term 7, in (5.2), we require the model H(z, +d) to
interpolate the function values F(z_;) at p<Vn previous iteratesx_;, - -+, z_p.
Substituted into (5.2), this requirement is

Flz) = F(z)=F(z)s; + hTesisi, i=1,- - p<svn (5.3)
where

S =X — Xy (5.4)

The upper bound of Vn past points was suggested by the computational
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iexperience of Schnabel and Stordahl mentioned in Seétion 4 for conic methods
ithat use past function values; it also is required to keep the costs of forming and
:solving the tensor model small. The past points are selected by the same
mmethod as is used in Schnabel and Stordahl’s conic code. At each iteration, the
mmost recent past point is selected. Then, fori=2, - - -, Vn, the i** past point is
:selected if it makes an angle of at least 45 degrees with the affine subspace

:spanned by the already selected subset of the 1% through i—1% past points.

"The p<Vvn interpolation conditions (5.3) result in np linear equations in the
m® elements of 7, meaning that 7, is underdetermined. Following successful
jprecedent in determining secant updates for nonlinear equations (see e.g.

Dennis and Schnabel [1979]), Schnabel and Frank choose the 7, that solves

rq{:tr};ggf 1T llP (6.5)

~

subject to T, si8; = 2(F(z—)—F(z. )+ F(z)s;), i=1,"" p

iwhere ||-||r denotes the Frobenius norm. They show that the solution to (5.5) has

‘the form

T, = g a; S; S (5.8)

'where g;€R™, i=1, - - - ,p and g; s; s5; denotes the rank one tensor whose 1,5,k
element is o;[i]-s;[j]'s;[k]. Thus T, is a rank p tensor. The p vectors g;€R™
are calculated by solving one symmetric and positive definite pxp system of
2

ilinear equations with n different right hand sides, requiring a total of npf<n

reach multiplications and additions.

'Given the form (5.8) of T,, the tensor model (5.2) becomes

iz +d) = Fiz,) + F(z)d + 3 o; (s7d)?. (5.7)
i=1
‘Therefore a maximum of 2n'® additional storage locations are required for the

‘tensor term, to store the p g; and s; vectors. (The z_; and s; vectors can share
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storage.) The dominant arithmetic cost in forming the tensor term is the n?p
= n®% multiplications and additions required tc; form the p right hand sides of
(5.5). Neither of these costs is significant in comparison to the n? locations and
O(n®) arithmetic operations required to store and solve the standard linear

model.

To use ﬁ(zc-%-d) given by (5.7) in an algorithm for nonlinear equations,

presumably we need to be able to find a d4€R™ for which }[}(xc +d4)=0. However
the model may not always have a real root, as is obvious by considering the one

dimensional case, and in this case it seems reasonable to find a d, that minim-

izes Hﬁ(xc +d)|]z. Thus in general we need an efficient procedure for solving

minimize ||M(z,+d)|} (5.8)
d4ER™

for fl(a:c +d) given by (5.7). Schnabel and Frank show how to reduce (5.8) to a"

much smaller problem of the form

miilgig;ize 1@z, @: RP»RY (5.9)
where the q equations in p unknowns §(z) are quadratic and p<g=<n, with usu-
ally g=p. The reduction is accomplished using orthogonal transformations of
the variable and function spaces. It requires the QR decomposition of F(z;)
which also usually is used in a Newton's method algorithm and takes 2n2/ 3 each
multiplications and additions; the next leading term in the reduction is 2n%

= 2n®® additional multiplications and additions which is insignificant in com-

parison.

Now to find a root or minimizer of the tensor model (5.7) we still must solve
the nonlinear problem (5.9); however, this is inexpensive due to the reduced
number of variables in (5.9). To solve (5.9) by a nonlinear least squares algo-
rithm costs O(p%g) arithmetic operations per iteration, and in practice a max-

imum of 2p iterations suffices. Thus the total cost of solving (5.9) is O(p3q)
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operations, which is £0(n?) in the normal case when p=g, and =0(n?%) in all
cases. Given the solution to (5.9), the solution to (5.8) is obtained by backsolv-
ing and requires 0(n?) arithmetic operations. Therefore the total cost of finding
a root or minimizer of the tensor model is not significantly more than calculat-
ing the root of the standard linear model using a @R factorization. It is twice as
expensive as calculating the root of the standard linear model using Gaussian
elimination; however many production codes do use the @R factorization
because it facilitates the global portion of the algorithm and the modifications
required when F'(z.) is ill-conditioned (see Dennis and Schnabel [1983]).

An important point is that the model (5.7) may have isolated solutions even
when F(z;) is singular and F(z,) is not contained in the subspace spanned by
the columns of F'(z.); if so the method of Schnabel and Frank should find a solu-
tion. Similarly, (5.8) often is not an ill-conditioned problem when the solution of
the linear model would be. It is hoped that these properties are beneficial on
problems where F'(zy) is singular. Another interesting issue is that (5.7) usually
has multiple roots or minimizers; we try to find the dy closest to the Newton
step, by appropriately choosing the starting point z,€R™ in the algorithm that

solves (5.9).

Schnabel and Frank have tested an algorithm based on a preliminary ver-
sion of the above techniques. At each iteration, after determining the solution
dy to (5.8), it takes x4 =z, +d, if this is an acceptable next iterate. If not, it
does a line search in the Newton direction if dy is not a descent direction, or
occasionally if it prefers the Newton directiqn for other reasons given in Frank
[1982], otherwise it does a line search in the“direction dy. Schnabel and Frank
compare their algorithm to an algorithm that uses the standard linear model
exclusively but otherwise is identical to the tensor algorithm, using the test
problems in More’, Garbow, and Hillstrom [1981]. For all but one of these prob-

lems (Powell's singular function) F'(z,) is nonsingular, so they also construct
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singular versions of the problems in More’, Garbow, and Hillstrom, as described
in Schnabel and Frank [1982]. The dimensions of the problems range from 2 to

50, with most of the problems having dimension between 10 and 50.

Detailed results of these tests are given in Frank [1982] and in Schnabel
and Frank [1982]. In summary, on 44 problems where F'(z,) is nonsingular, the
tensor method requires fewer iterations and function and Jacobian evaluations
than the standard method in 30 cases, the same number in 18 cases, and more
in 1 case. The improvements rarely are by more than 20%, however most of
these problems are quite easy when using analytic Jacobians, requiring 10 or
fewer iterations. On a set of 37 problems where F'(z) has rank n—1, the tensor
method requires fewer iterations and function and Jacobian evaluations in 26
cases, the same number in 8 cases, and more in 3 cases. Here the improvement
by the tensor method is far more dramatic; the standard method fails to solve \
11 of the 37 problems in 150 iterations, whi“le the tensor method solves all of
these in at most 27 iterations. On a second differently constructed set of 25
problems where F'(zy) again has rank n—1, the tensor model requires fewer
iterations and function and Jacobian evaluations in all cases. The standard
method solves 24 of these; on these problems, the tensor algorithm requires an
average of 537 of the iterations and 58% of the function evaluations used by the
standard algorithm. Finally, on 37 problems where F'(z4) has rank n -2, the
tensor model again does better in 26 cases, the same in 8, and worse in 3, again
with substantial improvements in many cases. Clearly these results show prom-

ise for the tensor methods.
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6. Future applications of conic and tensor models

Methods that use conic and tensor models are still in their infancy.
Depending upon their success, conic and tensor models might eventually be
used in many areas of optimization besides the ones described in Sections 4 and

5. In this section we comment briefly on some of these possibilities.

Conic models or collinear scalings do not seem suited to the nonlinear equa-
tions problem. The collinear transformation of the standard linear model for
nonlinear equations,

F(z;)d

1+bld
suffers from the fact that its root is in the Newton direction —F'(z,) ' F(z,) for

Mz, +d) = Fz,) + (6.1)
all values of b;; thus, only a steplength parameter is introduced. On the other
hand, conic models certainly could be applied to nonlinear least squares or con--
strained optimization problems. They also may be useful for solving special
classes of optimization problems, for example penalty functions where the hor-

izon of the conic function might help reflect the shape of the penalty function.

Hopefully, tensor models can be applied to all four problem classes listed in
Section 2, derivative and secant methods for both nonlinear equations and
unconstrained minimization. In fact, our own main practical interest would be
in a secant tensor method that quickly solves unconstrained minimization prob-
lems with V*f (z4) singular or ill-conditioned, because we see many such prob-
lems in practice. An example is overparameterized data fitting problems, where
in our experience the objective function usually is sufficiently expensive to
evaluate that secant methods are preferred. The extension of the method of
Section 5 to a secant method for nonlinear equations, and the extension to
unconstrained minimization, both appear to present challenging problems. The

tensor method of Section 5 generalizes virtually without change into a Gauss-
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Newton or Levenberg-Mérquardt type method for solving the nonlinear least
squares problem, and since the analytic or finite difference Jacobian always is
used in this setting, such a method would be of practical interest. Tensor
methods also may be useful in finding complex sclutions to nonlinear equations

or optimization problems.

Finally, there certainly are other nonstandard models besides conics and
tensors that could be considered for nonlinear equations or optimization prob-
lems. The main contribution of conic and tensor models may be that they cause
researchers to consider various nonstandard models, and that some of these

prove Lo be useful in practice.
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